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Abstract

Spatial cluster detection involves finding spatial 
subregions of some larger region where clusters of 
some event are occurring. For example, in the case 
of disease outbreak detection, we want to find 
clusters of disease cases so as to pinpoint where the 
outbreak is occurring. When doing spatial cluster 
detection, we must first articulate the subregions of 
the region being analyzed. A simple approach is to 
represent the entire region by an nn× grid. Then we 
let every subset of cells in the grid represent a 
subregion. With this representation, the number of 
subregions is equal to 12

2
−n . If n is not small, it is 

intractable to check every subregion. The time 
complexity of checking all the subregions that are 
rectangles is θ(n4). Neill et al.8 performed Bayesian 
spatial cluster detection by only checking every 
rectangle. In the current paper, we develop a 
recursive algorithm which searches a richer set of 
subregions. We provide results of simulation 
experiments evaluating the detection power and 
accuracy of the algorithm. 

Introduction 

Spatial cluster detection consists of finding spatial 
subregions of some larger region where clusters of 
some event are occurring. For example, in the case of 
disease outbreak detection, we want to find clusters of 
disease cases so as to pinpoint where the outbreak is 
occurring. Other applications of spatial cluster 
detection include mining astronomical data, medical 
imaging, and military surveillance. When doing 
spatial cluster detection, we must first articulate the 
subregions of the region being analyzed. A simple 
approach is to represent the entire region by an 

nn× grid. Then we let every subset of cells in the 
grid represent a subregion. This is the approach taken 
in this paper. With this representation, the number of 
subregions is equal to 12

2
−n . If n is not small, it is 

intractable to check every subregion. The time 
complexity of only checking every subregion that is a 
rectangle is θ(n4). Neill et al.8 performed Bayesian 
spatial cluster detection by only checking every 
rectangle. In the current paper, we develop an 
algorithm which searches a richer set of subregions. 
The algorithm can be used in any application of 
spatial cluster detection. However, we test it 
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specifically in the context of disease outbreak 
detection. So next we describe disease outbreak 
detection. 

Disease Outbreak Detection: Le Strat and Carrat6

define an epidemic as the occurrence of a number of 
cases of a disease, in a given period of time in a given 
population that exceeds the expected number. A 
disease outbreak is an epidemic limited to localized 
increase, e.g., in a town or institution. If we can 
recognize an outbreak and its potential cost early, we 
can take appropriate measures to control it. 
Monitoring a community in order to recognize early 
the onset of a disease outbreak is called disease 
outbreak detection. 

Often the count of some observable event increases 
during an outbreak. For example, since Crypto-
sporidium infection causes diarrhea, the count of 
over-the-counter (OTC) sales of antidiarrheal drugs 
ordinarily increases during a Cryptosporidium
outbreak. Typically, during an outbreak, the number 
of new outbreak cases increases each day of the 
outbreak until a peak is reached, and then declines. 
Accordingly, the count of the observable event also 
increases during the outbreak. Therefore, a number of 
classical time-series methods have been applied to the 
detection of an outbreak based on the count of the 
observable event. Wong and Moore9 review many 
such methods. Jiang and Wallstrom4 describe a 
Bayesian network model for outbreak detection that 
also looks at daily counts.  

Cooper et al.1 took a different approach when 
developing PANDA. Rather than analyzing data 
aggregated over the entire population, they modeled 
each individual in the population. PANDA consists of 
a large Bayesian network that contains a set of nodes 
for each individual in a region. These nodes represent 
properties of the individual such as age, gender, home 
location, and whether the individual visited the ED 
with respiratory symptoms. By modeling each 
individual, we can base our analysis on more 
information than that contained in a summary statistic 
such as over-the-counter sales of antidiarrheal drugs. 
PANDA is theoretically designed specifically for the 
detection of non-contagious outbreak diseases such as 
airborne anthrax or West Nile encephalitis. Cooper et 
al.2 extended the PANDA system to model the CDC 
Category A diseases, (See http://www.bt. 
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cdc.gov/agent/agentlist-category.asp). This 
augmented system, which is called PANDA-CDCA, 
takes as input a time series of 54 possible ED chief 
complaints, and it outputs the posterior probability of 
each CDC Category A disease and several additional 
diseases. 

In a given region being monitored an outbreak may 
occur (or at least start) in some subregion of that 
region. For example, a Cryptosporidium outbreak 
might occur only in a subregion in close proximity to 
a contaminated water distribution. We want to 
determine that subregion, which can sometimes be 
accomplished by doing spatial cluster detection. 

Spatial Cluster Disease Outbreak Detection:
Traditional spatial cluster detection focuses on 
finding spatial subregions where the count of some 
observable event is significantly higher than 
expected. A frequentist method for spatial cluster 
detection is the spatial scan statistic developed by 
Kulldorff5. Neill et al.8 developed a Bayesian version 
of the spatial scan statistic. In their experiments, they 
only considered the set of all subregions that are 
rectangles. This paper describes an algorithm that 
investigates a richer subset of subregions than the set 
of rectangles. We test the algorithm by using it to 
perform Bayesian spatial outbreak detection with 
PANDA-CDCA. Therefore, before describing the 
algorithm, we review PANDA-CDCA. 

PANDA-CDCA 

Figure 1 shows the Bayesian network in PANDA-
CDCA. We briefly describe the nodes in the network. 
Node O represents whether an outbreak is currently 
taking place. Node OD represents which outbreak 
disease is occurring if there is an outbreak. Node F
represents the hypothetical fraction of individuals in 
the population who are afflicted with the outbreak 
disease and go to the ED, given that an outbreak is 
occurring. This node indicates the extent of the 
outbreak, if one is occurring. For the sake of 
computational efficiency, we modeled F as a discrete 
variable. Furthermore, we assumed all outbreak types 
are equally likely to have the various levels of 
severity. This assumption is not necessary, and there 
could be an edge from OD to F. Node rD represents 
whether an individual arrives in the ED with a 
particular disease. There is one such node for each 
individual r in the population. One value is NoED,
which means the individual does not visit the ED. 
Node Cr represents each of the possible chief 
complaints the individual could have when arriving in 
the ED. 
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To do inference, we proceed as follows. On each day, 
we know the value of Cr for each individual r in the 
population. We call the set of all these values our 
Data. Using the network in Figure 1, we then 
compute P(OD=none|Data) and for each outbreak 
disease  d, P(OD=d|Data).  

OD

P(OD = flu | O = yes) =.8
P(OD = botulism | O = yes) =.01

......

P(OD = none | O = yes) = 0
P(OD = flu | O = no) = 0
P(OD = botulism | O = no) = 0

......

P(OD = none | O = no) = 1

F

Dr

Cr

P(Cr = chest pain | Dr = flu) = .022528
P(Cr = diarrhea | Dr = flu) =.014422

......

P(Cr= none | Dr = flu) =0
......

P(Cr = chest pain | Dr = noED) = 0
P(Cr = diarrhea | Dr = noED) = 0

......

P(Cr = none | Dr = noED) = 1

P(F = .0000118) = .0667
P(F = .0000236) = .0667

......

P(Dr= flu | OB = flu, F = .0000118) = ..0000118
P(Dr= botulism | OB = flu, F = ..0000118) = 0

......

P(Dr = other |OB = flu, F = .0000118) = .00203298
P(Dr = noED |OB = flu, F = .0000118) = .99795522

......

P(Dr = flu | OB = none, F = .0000118) = 0
P(Dr = botulism | OB = none, F = ..0000118) = 0

......

P(Dr = other | OB = none,  F = .0000118) = .002033
P(Dr = noED | OB = none, F = .0000118) = .997967

O P(O = yes) = .05
P(O = no) = .95

Figure 1. The PANDA-CDCA Bayesian network. 

A Recurisve Algorithm for Spatial Cluster 
Detection of Complex Subregions 

Next we develop a new algorithm for spatial cluster 
detection of complex subregions, and we apply the 
algorithm to outbreak detection using PANDA-
CDCA. First we show how to compute the likelihood 
that a given subregion has an outbreak using 
PANDA-CDCA. 

Computing the Likelihood of a Subregion: Let OS 
be a random variable, which represents the outbreak 
subregion, whose value is none if no outbreak is 
occurring, and whose value is S if an outbreak is 
occurring in subregion S. We want to compute 
P(Data|OS=none) and for each subregion S,
P(Data|OS=S). 

When OS=none we assume the data is being 
generated according to the model shown in Figure 1 
with OD set to none. Therefore, P(Data|OS=none)
=P(Data|OD=none), which is computed by doing 
inference in the network in Figure 1. When OS=S we 
assume the data in subregion S is being generated 
according to the model in Figure 1 with OD set to one 
of the 13 diseases, and the data outside subregion S is 
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being generated by a separate model with OD set to 
none. Let Datain be the data concerning individuals in 
subregion S and Dataout be the data concerning 
individuals outside of subregion S. Then 
P(Datain|OD=d,OS=S) and P(Dataout|OD=d,OS=S)
are each computed by doing inference in the network 
in Figure 1 with the instantiations just mentioned. We 
then compute

=== ),|( SOSdODDataP

).,|(
),|(
SOSdODDataP

SOSdODDataP

out

in

==
×==

Finally, we sum over OD to obtain the likelihood of 
subregion S.

Figure 2. The shaded area is a possible subregion 
discovered by algorithm refine.

Finding a Likely Subregion: We can do Bayesian 
spatial cluster detection by only considering 
subregions that are rectangles, and assigning the same 
prior probability to all rectangles. Then, after 
computing the likelihoods discussed in the previous 
subsection, we use Bayes' Theorem to calculate 
P(OS=none|Data) and P(OS=R|Data) for every rec-
tangle R. The posterior probability of an outbreak is 
then equal to ∑R P(OS=R|Data). We can then base 
the detection of an outbreak on this posterior 
probability, and report the posterior probability of 
each rectangle. The most probable rectangle is then 
considered to be the most likely subregion where the 
outbreak is occurring. The algorithms described next 
assume that we have done this. They then search for a 
more likely subregion than the most probable 
rectangle.  

For subregion S, let P(Data|OS=S) be the “score” of 
S. If we let Scorebest be the score of the most probable 
rectangle, we can possibly find a higher scoring 
subregion by seeing if we can increase the score by 
joining other rectangles to this rectangle. The 
following is an algorithm that repeatedly finds the 
rectangle that most increases the score and joins that 
rectangle to our current subregion. It does this until 
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no rectangle increases the score. By score(G,S) we 
mean the score of subregion S in grid G.

void refine (grid G; subregion& Sbest)
determine highest scoring rectangle Rbest in G;
Sbest = Rbest;

Scorebest  = score(G, Sbest); 
flag Rbest;
repeat 

found = false; 
for (each unflagged rectangle R in G) {

Stry = Sbest∪R;
if (score(G, Stry)) > Scorebest) {

=found  true; 
Scorebest  = score(G, Stry); 
T = R;}}   

if (found) {
Sbest = Stry ;
flag T; }

until (not found);  

The algorithm would be called as follows (G is the 
entire grid): refine(G, Sbest). The worst case time 
complexity of the algorithm is O(n8). Figure 2 shows 
a possible subregion discovered by algorithm refine.
In order to model that more complex subregions have 
a lower prior probability than less complex ones, in 
each iteration of the repeat loop we multiplied the 
score by a penalty factor. 

We might do better if, when we find a rectangle R in 
our grid G that increases the score, we treat R as grid, 
recursively call refine with R as the input grid, find 
the best subregion Vbest in R, at the top level check if 
Vbest increase the score in G more than R, and, if so, 
replace R by Vbest. The algorithm that follows does 
this. 

void refine2 (grid G; subregion& Sbest, int level)
if (level ≤ N) { // N is the recursion depth. 

determine highest scoring rectangle Rbest in G;
Sbest = Rbest;
Scorebest  = score(G, Sbest); 
flag Rbest;
if (level < N) {

);1,,(2 +levelVSrefine bestbest

if )),(( bestbest ScoreVGscore > {
;bestbest VS =

);,( bestbest VGscoreScore = }}
repeat 

=found false; 
for (each unflagged rectangle R in G)

Stry = Sbest∪R;
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if (score(G, Stry)) > Scorebest ) { 

if (level < N) {
);1,,(2 +levelVRrefine best

if ),(( bestbest VSGscore ∪
> score(G, Stry ) )

Stry = Sbest∪Vbest; }
found = true; 
Scorebest  = score(G, Stry); 
T = R; } }

if (found) {
Sbest = Stry ;
flag T; }

until (not );found }

The top-level call is as follows: ).0,,(2 bestSGrefine
If the rectangles recursively become sufficiently 
small, algorithm refine2 can detect an outbreak of any 
shape.  

Experiments 

Method: We simulated a region covered by a 10×10 
grid. Using a Poisson distribution with mean 9500, 
we randomly generated the number of people in each 
cell of the grid. Next, using this simulated population, 
the Bayesian network in PANDA-CDCA with the 
outbreak node O instantiated to no, and logic 
sampling7 we simulated ED visits during a one year 
period in which no outbreak was occurring. For each 
cell, we determined the mean and standard deviation 
σ of the number of ED visits for that cell. We 
simulated 3 types of 30-day influenza outbreaks: 
mild, moderate, and severe. To simulate a mild 
outbreak in a given cell, which reaches its peak on the 
15th day, we assumed that σ15 extra ED visits (due 
to patients with influenza) occurred in the first 15 
days in the cell, and then we solved 

σ×=Δ++Δ+Δ 15152 L

for Δ. We next injected Δ new ED visits in the cell on 
day 1, 2Δ on day 2,…, and tΔ on day t. We did this 
for 12 days. (Outbreaks were always detected by the 
12th day.) To simulate moderate and severe 
outbreaks, we repeated this procedure with values of 
σ2 and .3σ The following table shows the average 

value of Δ for each type of outbreak: 

Outbreak  Type Stand. Deviations Avg. Δ
mild σ .443 

moderate σ2 .886 
severe σ3 1.329 
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The number of injected ED visits must be an integer. 
We rounded down when t Δ < .5, and up otherwise. 
Figure 3 shows a simulated outbreak in one cell. 
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Figure 3. A simulated moderate outbreak. 

We simulated outbreaks in six different types of 
subregions. The first was a T-shaped subregion, the 
second L-shaped, the third a cross, and the last three 
were three different separated rectangles.  Figure 4 
shows the T-shaped subregion and one of the 
separated-rectangles subregions. For each outbreak 
type, for each of the six subregion types, we did 12 
simulations at different times during the one year 
background period. This made a total of 72 
simulations for each of the three outbreak types. We 
used Algorithm refine2 with a recursion depth of 5 to 
determine the outbreak subregion. 

(a) (b)

Figure 4. The injected T-subregion is shown in (a), 
and one of the injected separated-rectangles 
subregions is shown in (b). 

Results: To measure detection power, we used 
AMOC curves3. In such curves, the annual number of 
false positives is plotted on the x-axis and the mean 
day of detection on the y-axis.  Figure 5 shows 
AMOC curves for each of the outbreak types. To 
measure detection accuracy, we used the following 
function: similarity(S1,S2) = #(S11S2) / #(S1χS2), 
where # returns the number of cells in a subregion. 
This function is 0 if and only if two subregions do not 
intersect, while it is 1 if and only if they are the same 
subregion. For each outbreak type, we determined the 
mean of the similarities between the detected 
subregions and the injected subregions on each day of 
the outbreaks. The graphs of these relationships 
appear in Figure 6. The mean similarity for mild 
outbreaks is about 0 on day 1, and for moderate and 
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severe outbreaks it has about the same value on day 1. 
This may be due to rounding. For example, since for 
mild outbreaks the average Δ=.443, no ED visits were 
often injected on the first day of such outbreaks. 
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Figure 5. AMOC curves. 
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Figure 6. Mean similarities between detected 
subregion and injected subregion. 

Discussion and Conclusions 

The results are encouraging. They indicate that, on 
the average, we can detect 30-day severe, moderate, 
and mild outbreaks in complex subregions, 
respectively about 1.9, 2.2, and 4.0 days into the 
outbreak. Furthermore, the similarity between the 
detected subregion and the outbreak subregion 
averages about .7 by the 2nd, 3rd, and 8th days 
respectively of severe, moderate, and mild outbreaks.  

We presented a recursive algorithm for detecting 
outbreaks in complex subregions. The results 
reported here provide support that the algorithm is a 
promising method for detecting such outbreaks. 

In this preliminary evaluation, we used simulated data 
in order to test the inherent detection capability of the 
algorithm under well controlled conditions. Given 
that the results were promising, we next plan to 
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evaluate the algorithm using real data and compare its 
results to that of other approaches. 
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